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Introduction

« Dynamic (time history) response analysis

- involves solving the dynamic equation of
motion throughout the duration of the ground R
shaking (or ground displacement) and the
subsequent system vibration.

« Usually done by application of the earthquake
ground motions in three orthogonal directions

simultaneously to a finite-element model of
the system. Finite element model of a dam outlet pipe (stresses)

- obtains time history excitations of the system,
including stresses, strains, and reaction forces
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Introduction

» This method requires ground motion time histories sipeline permanent
established from a seismic hazard analysis. 'y

tunnel

* In some instances, ground shaking and dynamic
displacement are both critical seismic load
conditions (e.g., fault crossings).

- Then the ground-motion time histories should match
both the target response spectrum and contain a
dynamic displacement with permanent offset (fling-
step).

- Until now, there is no standardized procedure for this. Finite element model showing the tunnel (blue)

and pipeline (brown) on sliding supports, subject to
displacement at a fault crossing
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Introduction
Ground motion

- Fling-ste o
9 P 200 - -

- engineering term for the effects of the permanent tectonic offset
of a rupturing fault in the recorded ground motions near the fault.

"é‘ /\ /\v,k\/\\
- expressed by a single-cycle acceleration pulse, a one-sided 1,21 , V
pulse in ground velocity and a nonzero final displacement at the [ -
end of shaking. QE) 100}
@
§ ‘—TP_’ Dsite
« The notation used by Kamai et al. (2014) is: g
D¢ = mean fault slip (displacement) over the rupture plane.
e : L <« [
Diite = component-specific amplitude of the tectonic displacement 0 k) : v
(fling-step) observed or modeled at a site. 0 10 20 30
T, =the period in seconds of the single-cycle acceleration sine Time [s]

wave used to model Dy,

Ground motion displacement from the 1999
Kocaeli, Turkey earthquake.

Figure modified from Burks and Baker (2016)
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Description of the Dilemma

There are challenges in modifying time histories to contain both a fling-step (with a specified duration and
amplitude) and to acceptably match a target response spectrum.

Difficulty arises due to the inherent relationship between the response spectrum and the acceleration time
history.

Three potential methods are outlined next — each have significant shortcomings.

Option 1: Simple scaling of a recorded time history containing a fling-step.
Option 2: A combination of simple scaling, followed by spectral matching.

Option 3: Add the fling-step to an acceleration time history without an existing fling-step, followed by spectral
matching.

Then,
Proposed Method: Like Option 3, using a modified target response spectrum for spectral matching.
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Option 1: Simple scaling
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Option 1: Simple scaling

| e LLLL] LI ' LLL] TE\ I l I As-Récorded (écale Fac;tor=1)
S 100 Dsite: -91 cm
g O |
E \M
8 -100+ .
ke
&-200+ 1
© 1 1 1 1 1 1
/\'\/\\\ﬂA_l‘ /\ E 4 mL | ' | . Scaled‘to T=3 sézc PSA (écale Fac{or=2) |
@ Dsite: -182 cm
< ——] Drawbacks: | ]
o - The response spectrum is scaled at all spectral periods. \/\/ﬁ#\_\__
107 | . : i i L : l
[ - It is straightforward to control the response spectrum amplitude at a given | ‘ T
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Option 2: A combination of simple scaling (to reach the target Dg;;,.), followed by spectral
matching.

Drawbacks:

- Does not lend itself to specifying the fling-step duration. More on this next

- Has potential for destructive interference use:

The fling-step (with a given period and amplitude) is related to the response spectrum
amplitude in that period range, and modification to one will affect the other.
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——— unmodified
—— sine wave pulse
e with pulse added

Option 3: Add the fling-step to an acceleration time
history without an existing fling-step,
following Kamai et al. (2014), then perform
spectral matching.
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T

acceleration (g)
o

 The Kamai et al. (2014 ) method is to add a
single-cycle sine wave in acceleration.

(o)
o

 Allows specification of the pulse period and fling-
step amplitude.

velocity (cm/s)
o

 Drawback:

- The same potential for destructive interference, 100 F j i i j ]
because of the relationship between the pulse
and the response spectrum.
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Destructive interference - example

150 T
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Modification Procedure

Select a time history without a fling step.
2. Spectrally match to the target spectrum.

3. Add the fling-step following Kamai et al.
(2014).

4. Calculate F(T): the ratio of the response
spectrum before and after adding the fling-
step.

Scale the target response spectrum by F(T).

5. Spectrally match the original time history to
the modified target spectrum.

6. Add the fling step as in Step 3.
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Modification Procedure (cont.) ﬁ f

7. Check the resulting time history for its non-stationary characteristics and for compatibility
with the target response spectrum (Target) and the target permanent displacement (Dg;¢e ).

This method should retain the non-stationary characteristics of the time history and maintain the
physically important features of the fling step.
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Limitations of the Procedure

The main limitation — it doesn’t always work!

» There is potential for the addition of the fling-step (sine wave in acceleration) to destructively
interfere with the vibratory ground motion, leading to the spectrum of the final time history falling
below the target at long periods.

» Steps 2-4 of the procedure are intended to reduce the likelihood of destructive interference.

« Still, users of the method will need to be cognizant of the effect each step has on the time
history.

* Troubleshooting tips are provided in the paper.
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Summary

« For engineering projects in which dynamic analyses are performed, ground-motion time
histories are required as input.

* In circumstances where both ground shaking and dynamic displacement are critical seismic
load conditions, ground-motion time histories may be required which simultaneously match a
target response spectrum and contain a fling-step with a specified duration and amplitude.

« This paper/presentation proposes a straightforward procedure for developing earthquake
ground motion time histories containing both features while maintaining the physically
important features of the fling-step.
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Thank you
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