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Outline

1. Hosgri-Shoreline strike-slip branch faulting scenario
2. Ventura-Lion backthrust scenario
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Scenario 1: Hosgri — Shoreline Faults (Strike-Slip)

* We used dynamic rupture modeling to investigate the conditions under which
branching strike-slip faulting can occur, and used that information to guide
kinematic broadband ground motion simulations of branching strike-slip faulting.

* We performed multicycle dynamic earthquake rupture modeling with an
unstructured 3-D spectral element method to model the Hosgri — Shoreline fault
system and explored the conditions under which branch faulting occurs.

* We used information from the dynamic rupture simulations to kinematically model
the location and timing of the branch rupture.
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Simulation Approach

SPECFEM3D (Galvez et. al., 2014, 2016)

The fault geometry and the mesh for Hosgri-
Shoreline fault is shown at right

The rupture process is simulated by rate-and-state
friction with aging law (Dietriech, 1979).

To compute the initial parameters prior to one
event we perform earthquake cycle modeling.
* Quasi-dynamic solver
* Import stresses, friction and state
* Not prescribing initial conds
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Setup for the eqk cycle modeling
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Snapshots of Branch Faulting
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Dynamic Fault Branching

The rupture velocity on the branching rupture is between 0.8 and 0.9 times shear
velocity (Vs). The fault mechanism is right-lateral strike slip.

The angle between the Hosgri and Shoreline faults is about 30 degrees and the
event nucleates close to the junction.

These conditions were found to be favorable for branching rupture where both the
Hosgri and Shoreline faults break at the same time.

Kame et al. (2003) predicts similar branching rupture under similar conditions where
both the main and branch faults rupture at the same time.
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Kinematic Slip Model
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Comparison of Dynamic and Kinematic Slip Velocity Functions
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Results

 The kinematic simulations consisted of 2 methodologies:

— In Trial A we used the fault dimensions, the final slip distributions, and the rupture initiation timing on
both faults from the dynamic simulations in the kinematic simulation. The GP recipe is used for the
scaling and shape of the slip rate functions on each subfault (which is a modified version of the Liu et

al. (2006) slip rate function.)
— Trial B used all of the above, as well as the full slip velocity time histories on each subfault from our
dynamic simulations.

e At periods between 0.2 and 0.8 seconds, the contributions of the Hosgri and Shoreline faults to
the combined ground motions are comparable, whereas the contributions from the Hosgri fault

are larger at longer periods.

e Use of the full dynamic slip velocities instead of the kinematic slip velocities resulted in much
lower ground motions at intermediate and long periods.

 The scenario as described was found to be favorable for branching rupture where both the
Hosgri and Shoreline faults break at the same time. A-COM
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Response Spectra
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Scenario 2: Ventura and Lion Branch Faulting
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Fault Geometry

Hubbard et al. (2015) proposed two alternative
interpretations of how the Ventura Anticline is
growing:

In the first, the region below the Ventura Avenue
anticline is highly fractured and close to failure.

rN acd Matintain failt’
nea ViouTia 1&:-;’3’.‘

In the second scenario, a pre-existing backthrust
embedded in the faulted region below the
Ventura anticline branches off the Ventura fault,
as shown at right.

Xu et al (2015) performed dynamic rupture anhua Fitas
simulations and provide mechanisms of how Point fault Ventura
backthrust faulting can be activated.
- How shallow will it go?

Hubbard et al. (2015)
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Objective

 Use dynamic rupture modeling to investigate the conditions under which conjugate
backthrust faulting can occur, and to use kinematic ground motion simulations, guided by
the dynamic modeling, in broadband simulations of conjugate backthrust faulting

 Use the rupture time, slip functions, and final slip to perform kinematic rupture modeling of
the ground motions.
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Fault Geometry and Fault Grid
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Setup for the eqk cycle modeling
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Snapshots of Branch Faulting

time: 3 seconds.
time: 8 seconds.

time: 6 seconds.
time: 9 seconds.

© o o o o o o o =
N w. e U'|. D ~ © ©
slip velocity (m/s)

<4
o



Kinematic Slip Model

We used the rupture time, slip functions, and final slip to perform kinematic rupture modeling of the ground motions.
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Kinematic Fault Geometry

Ventura & Lion Fault Planes with Simulation Sites
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Kinematic Simulations — Trial A (Ventura Site)
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Kinematic Simulations — Trial B (Ventura Site)
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Response Spectra (Ventura Site)
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Ground Motion Simulation Results

Trial A used the fault dimensions, the final slip distributions, and the rupture initiation timing on both faults
from the dynamic simulations in the kinematic simulation.

Trial B used the full slip velocity time histories on each subfault from our dynamic simulations in the
kinematic simulation.

The contribution of the Lion backthrust fault to the combined ground motion is quite small.

Use of the full dynamic slip velocities instead of the kinematic slip velocities results in much lower ground
motions at intermediate and long periods, and increases the contribution of the Lion backthrust.

In the Dynamic sims, the rupture front breaks the Lion backthrust fault and dies out after a few seconds,
breaking only the deep section of the Lion fault. The second rupture on the Ventura fault continues and
breaks the free surface.
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Hosgri-Shoreline
Same spectra as previously, with BSSA 2014 GMPE median +/- 10 (M7.6 Hosgri scenario, Rjb=5km)
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RotD50 (g)

Ventura-Lion

Same spectra as previously, with BSSA 2014 GMPE median +/- 10 (M7.0 Ventura scenario, Rjb=0.5 km)
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